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Text-Dependent Speaker Verification Using
Vector Quantization Source Coding

I. INTRODUCTION

Speaker verification by machine consists of automatically authenticating the identity
claimed by a speaker given only samples of the speaker's voice. It has been an area of active
study for more than twenty years, and two categories of approaches to this problem have
developed. In one, verification decisions are based on speech that is selected by the speaker and
not known ahead of time by the verification system. This is known as text-independent
verification. In the other category, the verification system is trained on a prespecified utterance
and later this same utterance is spoken by the individual in question - this is called text-
dependent speaker verification. In this paper, we describe and evaluate several new approaches to
the text-dependent speaker verification problem.

A typical approach to text-dependent speaker verification consists of the following. Select a
parameter or a set of parameters that can be derived from the speech waveform and then
represent each speaker by a time-series of these parameters (called a reference template) obtained
from a particular utterance. The parameters are chosen normally with the hope that they reflect
speaker-specific, organic differences in the structure of the vocal apparatus or, perhaps, that the
time series of parameters will reflect learned differences in the use of the vocal apparatus to pro-
duce a particular utterance. After obtaining a reference for each speaker, an unknown speaker
claims an identity and speaks an appropriate utterance. This utterance is analyzed and a time-
series of parameters is obtained. The unknown speaker's parameters are aligned in time with the
reference stored for the speaker whose identity was claimed, and the decision to accept or reject
the speaker is based on a measure of the similarity between the two time-series of parameters.
Examples of parameters that have been used in this way are pitch [1], short time energy [1], short
time spectra [2], and linear predictive coding (LPC) coefficients or parameters that can be derived
from these coefficients [3].

In addition to the template matching approach described above, statistical methods have
been studied [4, 51. These methods use large amounts of training data to estimate the underlying
probability densities for the parameters chosen to represent a speaker. Once the probability den-
sities are specified, statistical detection theory methods are used to verify a speaker [6].

We approach the text-dependent speaker verification problem from a different viewpoint.
We consider a speaker of a particular utterance as an information source, and we model this infor-
mation source using a standard information-theoretic source coding method called vector quanti-
zation (VQ). VQ is a source coding technique [7] that has been used successfully in both speech
coding [81 and speech recognition [9, 10, 11]. In VQ, each source vector is coded as one of a pre-
stored qet of codeword8, called a codebook, by finding the codeword that minimizes the distortion
between itself and the source vector. For speech, a codebook is designed from a training sequence
consisting of typical speech (121. The training sequence is divided into frames (typically 20 mil-
liseconds), linear predictive analysis is done on each frame, and a clustering algorithm is used on
this sequence of LPC coefficients to obtain a codebook of representative spectra, or codewords.
The codebook is designed to minimize the average quantization distortion between itself and the

~training sequence.

Manuscript approved July 16, 1985.
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To use VQ source coding in speaker verification, we represent each speaker by a VQ code-
*: book designed from a training sequence composed of repetitions of a particular utterance. Later,

this same utterance is spoken by an unknown speaker with a claimed identity. This test utter-
ance is coded in the codebook representing the speaker whose identity was claimed, and the
resulting quantization distortion is compared to a threshold. If the distortion is less than the
threshold, the speaker is accepted.

In addition to our source coding point of view, our speaker verification approach is quite'
different from other approaches in several ways. No attempt is made to align-in-time a test
sequence with a stored reference sequence (indeed, no reference sequence exists), and no explicit
estimate is made of an underlying probability density function. Our verification procedures are,
however, closely related to optimal information-theoretic methods of classification that use the
information dissimilarity between two vectors as a discrimination measure [13, 14]. Preliminary
results were reported in [15].

We previously used VQ source coding in isolated word recognition [9, 16, 17]. The methods
C' used in those approaches to represent a word (design a codebook) and to compare an unknown
": input word with the stored codebooks (classify an input utterance) are the same as the ones

described in this paper to represent and verify a speaker. The differences are in the application of
the ideas and in the use of thresholds to make decisions.

Recently, another VQ based approach to speaker identification has been reported by Soong
et al [181. In this approach, each speaker is represented by a single VQ codebook designed to
represent that speaker saying the 10 digits. An unknown speaker then says the 10 digits, and the
average quantization distortion resulting from encoding the digits is used as a discrimination
measure to identify the speaker. Reported results are quite good - an error rate less than 2%
[181.

The rest of this paper is organized as follows. Section II describes three ways to represent a
speaker by using VQ source coding. Section III explains our speaker verification approach. Sec-
tion IV presents experimental results, and section V concludes with a summary and general dis-

*cussion.

H. BACKGROUND

In this section we briefly describe three ways to design a source model of a speaker; for

detailed descriptions of the methods, see [9, 16, 171. Following these descriptions is a list of the
distortion measures and LPC parameters we used in the speaker verification experiments.

First we establish some notation and define some terms. Upper and lower case roman and
italic letters (e.g. n, N, q, Q) denote scalars; lower case italic letters with bars (e.g. F) denote
vectors; upper case italic letters with bars (e.g. Z) denote sets of vectors (e.g.
C = fcF 1 , 2, ,I }); bold lower case roman letters (e.g. c) denote sequences of vectors (e.g.
e - c,.; i-=1, ,K); and bold upper case roman letters (e.g. C) denote sets of vector
sequences (e.g. C = (c c ., ,c N}).

Throughout, all vectors consist of LPC coefficients and a gain term. T - {t' 1 ,t2 , 7 ,P }
is a P-vector training sequence obtained from M repetitions of an utterance by a speaker.
- = (71,72, " " ,-'L } is an L-vector test sequence corresponding to an utterance obtained from
a speaker for verification purposes. C represents a VQ codebook, whether it is single-section or
multisection will be clear from the context, and finally, C represents a matrix quantization code-
book.

A. Single Section Vector Quantization

For speaker verification, a single-section VQ codebook C is designed to minimize the aver-
age distortion that results from encoding a training sequence T

2

... -



p

where FB is the codeword resulting from encoding the speech segment t,d (T,FB ) mind (t ),

and d is an appropriate vector distortion measure. This codebook represents a speaker saying a
particular word.

in. The average quantization distortion D4,, that results from coding a verification utterance~in codebook 0 is

_L L

Dg= , d (I ,F). (2)

It is this average quantization distortion that is used in making the verification decision.

This approach is called single section to distinguish it from the approach described in the
next section in which each speaker is represented by a codebook consisting of a sequence of
single-section codebooks.

B. Multisection Vector Quantization

In multisection VQ, we represent each speaker by a time-dependent sequence of single sec-
tion codebooks, which we call a multisection codebook. A speaker is verified by dividing his
verification utterance V into sections that correspond to the sections of the multisection code-
books, doing VQ on a section-by-section basis with the appropriate multisection codebook, and
computing the average distortion.

. To be more specific, let F be the number of frames in the q' utterance in the training
sequence for C, where q =1, - ,M; and let U, be the m A frame in the q'h training utter-
ance where m =1,... ,Fq. Now the multisection codebook C consists of a sequence of VQ section
codebooka C,., where the section codebook Cy is designed using (1) and n frames from each train-
ing utterance. That is, C,. is designed from the frames Umq, where m =(j -l)n +i,...,jn, and
q =1,....,. For example, C I is designed from the first n frames of each training utterance, C 2
from the second n frames, etc. We call n the section length - it is the number of frames that are
spanned per section. Finally, let Fj , i =1, ..., iVj be codewords in section codebook Q."

Dvgp is the average distortion resulting from coding the verification utterance V with the
codebook C,

Dal - (3)
T. J; d',Li-I

where S is the number of section codebooks in C,

I (ia --1di . in ,L min d (V , Fj )

is the total distortion from coding the j ' section of the utterance V with the jtA section code-
book C,. of C, and n is the section length. The verification decision is made using this distor-
tion.

C. Matrix Quantization

In matrix quantization, instead of coding a single source vector in a codebook containing
characteristic vectors, we code a time-ordered sequence of source vectors in a codebook containing
characteristic vector sequences. Given T, we find the matrix quantization codebook C contain-
ing codeword matrices c = 1,FjC,' ",jK] that minimizes

3
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P-K +lo- E D (t P), , ),

where C B is the codeword matrix resulting from coding the sequence of training vectors

by using the nearest neighbor rule

D(t,cB) = min D(t ,c),
i

and where the distortion between a speech segment t and the j'h codeword is
KD (t ,c; -- d (TI ,jI (4)
l-1I

We call K the codeword matrix size. The MQ codebook design algorithm we used [19] is a gen-
eralized version of the VQ design algorithm developed by Linde et al [12].

To use MQ in speaker verification, we represent a speaker saying a particular word by a
codebook C, just as in the VQ approaches above. A verification utterance is processed by divid-
ing it into overlapping sequences of K frames, coding each K frame sequence in the speaker-
codebook C, and computing the average quantization distortion between the utterance and the
codebook. To be specific, for a verification utterance V, the average distortion resulting from

- . coding it with codebook C is
1 /..-K +1

Dav - T E D(v1,CB). (5)

D. Distortion Measures

Based on results from previous work on isolated word recognition [9], we used the gain nor-
malized Itakura-Saito distortion measure (dGN) in (1) and (4) to generate codebooks. For power
spectrum estimates f and f that have the autoregressive (LPC) form

'..9)
.' ' f (0) ,

I A ( z ) 2 "

where

A(z)= Flakz -k

k -O

and z =exp(i 0), the dGN distortion is given by

dGN(f J)1

where

a = r (O)r.(0) + 2y r(n)r,(n),

M-M
r.(n ) = a, a,+..

and where r (n) are the time-domain autocorrelations of f (0). For the verification distortion

measure in (2), (3), and (5), we used the gain optimized Itakura-Saito distortion measure (d0 o),

d Go ( ,I) = n(a)4n(o),

which is also known as the log likelihood distortion measure. Properties of these distortion meas-
ures are discussed in [201.

4
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E. LPC Parameters

LPC parameters for both codebook generation and speaker verification were generated using
the autocorrelation method of linear predictive analysis with Hamming windowing. We chose
analysis conditions for compatibility with the Navy's 2.4-kbs LPC-10 system[21]: analysis window
width = 128 points, filter order = 10, and pre-emphasis = 94%.

111. SPEAKER VERIFICATION APPROACH

Usually, no information is available for the characteristics of specific unacceptable speakers,
and the main problem in applying these source coding approaches to speaker verification is to for-
mulate a criterion for rejecting a speaker. To decide whether to reject a speaker (given an utter-
ance), we associate a threshold with each speaker codebook. An unknown utterance (speaker) is
rejected if its distortion exceeds the threshold. To design thresholds for a speaker, we estimate
parameters for two Gaussian distributions: the in-class distribution of distortions (obtained by
encoding utterances from that speaker in his or her codebook) and the out-of-class distribution of
distortions resulting from encoding utterances spoken by other speakers. We choose the threshold
to equalize the overlap area of the two distributions, thus equalizing the expected numbers of
imposter acceptances (false acceptances) and rejections of acceptable speakers (false rejections).

In more detail, the threshold computation is as follows. For each speaker, encode that
speaker's training data with his or her codebook. Compute the mean distortion j4fl resulting from
encoding the training data from speaker i in speaker i 's codebook, and compute the correspond-
ing standard deviation a i '. Also compute p, ", the mean distortion resulting from encoding utter-
ances not spoken by speaker i using the codebook for speaker i, and the corresponding standard
deviation a,° '. To equalize the number of false acceptances and false rejections, the threshold T;
is chosen to be an equal number of standard deviations away from each mean, giving

in out put in
Ti ", -- al put + or in

This method of threshold determination assumes Gaussian distributions. Some previous studies by
Buck [221, however, showed that the logarithms of average distortions are more nearly Gaussian
than the distortions themselves; so the thresholds were based on the statistics of the logarithms of
distortions, instead of simply the distortion as shown in (2), (3), and (5).

To verify a speaker, the verification utterance V is coded in the appropriate codebook and
the average log distortion is computed. This distortion value is compared to the threshold associ-
ated with that codebook, and if the distortion value exceeds the threshold, the speaker is rejected;
otherwise the speaker is accepted.

Preliminary experiments indicated that verification accuracy using a single verification
utterance is poor [151. To improve the verification accuracy, we based the verification decision on
the results for several words. The next section describes our approach to extending this method
to multiple words.

A. Extension To Multiple Words

In previous work [15], we examined three ways of extending our method to more than one
word. All three methods achieved about the same verification accuracy, and based on those
results, we used the simplest of the three methods in this work.

For each speaker, a separate codebook is designed for each word; if W words are to be spo-
ken, there are IV codebooks for each speaker. Separate thresholds are computed for each word,
and W different verification decisions are made. For example, if a speaker is requested to say
zero , three , and nine , the zero utterance is encoded with the zero codebook from that speaker;
the three utterance is encoded with the three codebook; etc. To make a verification decision, we

5
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use a majority rule; the decision made by a majority of the individual word classifiers is used as

the overall decision. In case of ties, the speaker is rejected.

IV. EXPERIMENTS

We first describe the speech data bases that were used in the verification experiments. We
next describe how the data bases were partitioned for use in separate parameter studies and
evaluation tests and what parameters were varied in the studies. This is followed by three sub-
sections; each subsection describes the verification results using one of the source models
described in section I.

A. Data Bases

We combined two data bases to do these experiments, both collected by Texas Instruments
Inc. (TI). The main difference in the data bases is the resolution of the A/D converters. One
data base was digitized with a 12-bit cor.verter; the second was digitized with a 16-bit converter.

Data for designing the codebooks to represent the speakers, determining the parameters for
the in-class distributions, and testing verification accuracy came from the data base described in
[23]. It contains 26 utterances of each digit (zero through nine) by 16 speakers (8 male and 8
female). We call this data base TI-1. The data used for determining the parameters for the out-
of-class distributions and for testing the imposter rejection capabilities of the methods came from
a data base designed for evaluating speaker-independent recognition of the digits [24]. It contains
two utterances of each of the 10 digits from 109 adult male and 111 adult female speakers that
are distinct from the speakers in TI-I. This data base is divided into two parts: a training part
containing 54 male and 55 female speakers, and a testing part containing 54 male and 57 female
speakers. We call this second data base TI-2.

Automatic endpoint detection for both training and test utterances was used in our experi-
ments. Our endpoint-detection algorithm is based on ideas presented in [25, 26]. Briefly, the
algorithm first analyzes the background noise to determine its average magnitude and then uses
the result to set various thresholds that are used to find significant "energy clumps" in the data.
Sep 19] for more details.

B. Data Base Partition

We first determined the number of training utterances required to characterize a speaker
saying a digit. To do this, for each speaker-digit combination, we designed a series of 8-
codeword, single section codebooks. We designed the first codebook using a one-utterance train-
ing sequence, and increased the number of training utterances by one for each new codebook. We
recorded the average codebook-design distortion for each codebook, and after designing all the
codebooks, examined the results looking for the number of training utterances required to maxim-
ize the codebook-design distortion. (See Figure 1 for the results from a typical speaker.) On aver-
age, it took 8 utterances to reach 90% of the maximum codebook-design distortion, and based on
this, we designed codebooks using 8 training utterances in all our experiments.

In all three parameter studies described below, we designed digit codebooks for each speaker
in the TI-I data base from the first 8 utterances of each digit. These 8 training utterances plus

*" the next 4 utterances were used to estimate the parameters for the in-class distribution for each
speaker-word model. The next 7 digits in TI-I were the speaker supplied verification data. For
the parameter studies, the TI-2 training data was divided into two parts. One part, containing the
first 27 male and 27 female speakers, was used to estimate the out-of-class distribution parame-
ters; the second part, containing the rest of the training portion of TI-2, was used as imposter
data.

Based on the results of the parameter studies, we chose several sets of words and codebook
parameters to use in the full data base tests of the three source models. In these tests, the

6
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training data for each speaker codebook again consisted of the first 8 utterances of a digit. The
in-class parameter estimation data, however, consisted of the first 16 utterances. The remaining
10 utterances of each digit were the verification data. We used all 109 speakers in the training
portion of TI-2 to estimate the out-of-class distribution parameters and the 111 speakers in the
test portion as the imposters.

C. Experimental Parameters

The codebook size, or the number of codewords in a codebook, is a parameter that we
varied in the experiments. For single section codebooks, the codebook size is always a power of 2
- i.e., N = 2

R , and we call R the rate of the codebook. For multisection codebooks, the size of
the constituent section codebooks is also always a power of 2, and we call the section codebook
rate Rs. Similarly, the size of matrix quantization codebooks is a power of 2; we call the matrix
codebook rate RM .

In addition to the codebook rates, we varied the section length n for multisection codebooks
and the matrix size K for matrix quantization codebooks during the parameter studies. The
parameters used during verification always matched those used in designing the codebooks.

There are a number of factors affecting the design of codebooks and thus the verification
results that we did not vary. For one, we preprocessed the training and verification data by divid-
ing each utterance into 24 equal length frzmes. This was done to provide a rough form of nor-
malization. Also, for single-section and multisection codebooks, we used an en".rgy (sum-of-
squares of data points) threshold of 250 to ignore low energy frames; this threshold was used both
in codebook generation and speaker verification. For matrix qaantization, we bandled low energy
frames in the following manner. The first K-1 low-energy frames in a sequence were replaccd
with flat-spectrum frames with energy equal to 250; if more than K-1 frames occurred in a
sequence, we ignored all but the first K-I. The reason for this was to preserve transitions from
silence-to-speech and vice versa, while eliminating any all-silent training and verification seg-
ments.

D. Single Section Results

Parameter Studies. We varied the codebook rate R in these experiments. Verification dcci-
sions were made using all 10 digits and the majority-rule classifier that was described in section
I .A. The results are listed in Table I for R ranging from I to 4. Most of the verification errors
were false rejections. This implies that the acceptance thresholds are too small. Because of this,
in the verification tests (described in this and the next two subsections IV.E and IVF), we
increased the number of training utterances used to estimate the in-class distribution parameters.
For R equal to 3 and 4, all errors were caused by just 2 speakers.

For R equal to 3, we measured the verification accuracy of each digit individually; the
results are in Table II. No single digit reliably verifies the speakers, and the individual digit
results are also biased toward false rejections. The last column in Table II contains the square
root of the product of the false-acceptance rate and the false-rejection rate (\/T R); this is
considered a good overall performance measure [27].

Verification Tests. As noted above, we added more utterances to the data that was used to esti-
mate the in-class distribution parameters; the new training set contained 16 utterances. \Ve felt
that by including more utterances that were not in the codebook training set, the in-class distri-
bution for a speaker would better represent new utterances from that speaker. Rate-3 codebooks
were used in the verification tests because they did best in the parameter study and also because
rate-3 codebooks yielded good speaker-trained isolated word recognition results [9].

The results, using all 10 digits in the verification decision, are listed by individual speaker in
Table III. The majority of the errors were caused by KAB and GRD; these also were the two
difficult speakers in the parameter study. The results are still biased toward false rejections,

7

-. . . . . . .:U:. ,.- !". . '. . -:



although the bias is smaller than it was in the parameter study. vTFA*FR for this test was 0.9.
Next several subsets of the digits were tested, each consisting of 5 digits. Based on the sin-

'-. gle digit parameter study, we used the best (01247), the worst (35689), and an arbitrary (25678)
set of five digits. Results are listed in Table IV. Again KAB and GRD were difficult speakers,
but now, many other speakers contributed to the errors. Based on the vTI7PW values for these
tests, the verification accuracies obtained by representing each speaker by five words were
significantly worse than those obtained using all 10 words. Generally, the degradation in perfor-
mance was restricted to false acceptances, and the overall performance was closer to the design
goal of equal error rates for the two types of errors.

E. Multisection Results

Parameter Studies. We varied both the section length n and the section codebook rate R, in
these experiments. Table V shows the results. Generally for a fixed Rs value, better results are
achieved using smaller n values. For Rs =2, tests using n equal to I and 2 were not done
because of insufficient codebook training data. Using n =4 and RS =2, we tested the verification
performance of the individual digits; the results are in Table VI. Again as in the single section
approach, no single digit gives good overall results and the errors are biased toward false rejec-
tions.

Verification Tests. We used n =4 and Rs =2 for the verification tests. These conditions were
chosen because they did well both in the parameter study and in previous isolated word recogni-
tion work [161. Table VII contains the results using all 10 digits to make the verification decision.
No speaker was particularly difficult, as KAB and GRD were when using the single section
approach, and in general, the results are closer to the design goal of equal false-rejection and
false-acceptance error rates than were the single section results. V/FA*FR was 0.6.

Again, we did verification tests using the best (12467), the worst (03589), and an arbitrary
(01234) set of five digits; the results are in Table VIII. The verification performance of the vari-
ous five-digit subsets corresponded well with the expected performance based on the single digit
study - i.e., the best five-digit set had the smallest v"-FA*FR , the worst set had the largest
vF'F. R , and the arbitrary set had an vTATPR between the other two. The only consistently
difficult speaker in these tests was KAB; averaged over the 3 five-digit tests, he had a false accep-
tance rate of 3.3%.

F. Matrix Quantization

Parameter Study. We varied the codebook rate RM and the matrix size K in these experi-
,,., ments. For each K value, the maximum RM was limited by the amount of codebook training

data (poor codebooks often result if insufficient training data is used). The results are listed in
Table L. No obvious relationship between K and RM is shown in these results. Using RM = 3
and K = 8 (these conditions are also good for isolated word recognition[17]), we measured the
verification performance of the individual digits; these results are in Table X. As in the single
section and multisection apI roaches, the error rates are biased toward false rejections.

Verification Tests. The full data base results using RM = 3, K = 8, and all 10 digits are listed
in Table XI. Once again, KAB was a difficult speaker. We tested the best (12467), the worst
(03589), and an arbitrary (01234) five digits; the verification results are in Table XI. The relative
performance of the five-digit sets did not correspond exactly with the expected results based on
the individual digit performances, but the worst digit-set did produce the poorest results.

8



V. SUMMARY AND DISCUSSION

The verification performance (vF. FFf) for the three source models when using only a sin-
gle digit per speaker were similar - roughly varying from 4 to 8 depending on the digit, and con-
sistently, the digits 1,2,4 and 7 individually did best in the speaker verification tests. When the
individual digits were joined with the majority rule classifier, however, the verification perfor-
mances of the three approaches were no longer equivalent. The multisection VQ source model did
best when using the 10- and 5-digit sets of verification words (for the 10 digits, vTiPF = 0.6:
for the best 5 digit set, /FAFR = 0.7). In addition, the multisection VQ approach came closer
to satisfying the design goal of equal error rates, and the results on the 5-digit subsets
corresponded more closely to the expected results (based on vFA*FR for the individual digits).
The next best source model was the single section approach, although the differences in VF.4*FR
values between the single section VQ and the MQ approach were small.

All three source models did well in the speaker verification tests, and in retrospect, the simi-
larity of their performances is not surprising. The three approaches are intimately connected
through the codebook design algorithm, and both the multisection VQ and the MQ approaches
are generalizations of single section VQ. This can be seen by considering the multisection VQ
approach with a section length n equal to the normalization length (24 in this study), and consid-
ering the MQ approach with the matrix size K equal to 1. Each approach reduces to single sec-
tion VQ under the appropriate condition.

The single section VQ source model captures only the short-time spectrum shape informa-
tion. This spectrum shape information is useful in speaker verification because it contains esti-
mates of formant frequencies, relative formant amplitudes, and formant bandwidths, and these
are correlated with the locations and physical sizes of the speech articulators. As such, the single
section results are a measure of how well the short-time spectrum can characterize a speaker. In
addition, because the codebook spectra are unordered, the single section VQ source model is
directly applicable to text-independent speaker verification [18[. It is generally believed, however,
that examining parameters as a function of time is valuable in speaker verification for two rea-
sons: (1) many of the speaker-characteristic properties of speech are the result of idiosyncrasies in
the speaking habits of people and (2) by considering the time sequence of parameters, the

- :emphasis is on how the parameters vary rather than the exact value of a parameter. The mul-
tisection VQ and the .IQ approaches represent two different ways of incorporating some phonetic
duration information into the verification process while maintaining the information-theoretic
source model approach. Multisection VQ improves the verification performance, and at best, MQ
does not degrade the performance. It is unclear why the durational information provided by the
IMQ approach does not improve the verification performance.

In addition to phonetic durations, a speaker will say an utterance with characteristic tones
or intonations, and stresses [28, 11. Because these are roughly independent of the spectrum shape
information, improvements in the verification accuracy could probably be achieved by adding
pitch and short time energy information to the verification process.

As an aside, it is interesting to consider how VQ speech coding could defeat a speaker
verification or identification system. Our single section VQ results show that the source model
found by using the Linde, Buzo, and Gray clustering algorithm [12] is an accurate representation
of the short-time spectra produced by a speaker. To impersonate a speaker, one needs only to
obtain training data spoken by that speaker and to design a VQ codebook specifically for that
speaker. Anyone could talk through this codebook (via VQ speech coding), and the resulting
speech would be characteristic of the speaker who provided the training data. It seems that this
procedure would defeat any speaker recognition system that relies solely on short-time spectrum
representations.

Finally, the connection between these speaker verification approaches and our previous iso-
lated word recognition approaches needs to be emphasized. The parameters (codebook size, sec-
tion length, and matrix size) and the source model (codebook) design procedure used in each of
the speaker verification tests are exactly those used in our previous work on isolated word
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recognition [9, 16, 171. In those studies, accuracies for speaker trained recognition of the digits
exceeded 99%. The very good speaker verification and isolated word recognition results achieved
using these approaches point toward a combined speaker-speech recognition system. These
results also illustrate the power of the VQ source coding approach using the Linde, Buzo, and
Gray clustering algorithm [121.
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Table . Speaker Verification Study: Single Section Codebooks,

Majority Rule, And All 10 Digits.

Codebook Number Of False Number Of False
Rate (R) Imvoster Utterances Acceptances Admissible Utterances Reiections

1 800 7 112 15
2 800 1 112 7
3 800 0 112 7
4 800 0 112 5

Table M. Speaker Verification Study: A Single Digit
Codebook Per Speaker And R = 3.

Digit Number Of False Number Of 1 False _
-Soken Imposter Utterances Acceptances Admissible Utterances Rejections V f tt -

ZERO 8oo 24 (3.0%) 112 10 (8.9%) 5.2
- ONE 8oo 9 (1.1%) 112 19 (17.0%) 4.3
* TWO 800 14 (1.8%) 112 10 (8.9%) 4.0

THREE 800 17 (2.1%) 112 17 (15.2%) 5.7
FOUR 8oo 12 (1.5%) 112 13 (11.5%) 4.2

SFIVE 8oo 19 (2.4%) 112 26 (23.2%) 7.5
SDC Soo 14 (1.8%) 112 17 (15.2%) 5.2
SEVEN 8oo 9 (1.1%) 112 16 (14.3%) 4.0
EIGHT 800 32 (4.0%) 112 15 (13.4%) 7.3
NINE 800 20 (2.5%) 112 20 (17.9%) 8.7
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Table III. Speaker Verification Results: R =3, Majority Rule, and All 10 Digits.

Speaker Number Of False Number Of False -AF
ID Imposter Utterances Acceptances Admissible Utterances Rejections _____________

TBS 222 0 10 0 0.0
XVF222 0 10 0 0.0

RLD 222 1 10 0 0.0
GRD 222 1 10 1 2.1.
KAB 222 5 10 26.7
vlsw 222 0 10 0 0.0
REH 222 0 10 0 0.0
RGL 222 0 10 0 0.0
Ci? 222f 0 10 0 0.0
DFG 222 0 10 0 0.0
ALK 222 0 10 0 0.0

HJ222 0 10 0 0.0
GINL 222 0 10 1 0.0
JWS 222 0 10 0 0.0KSiN 222 0 10 1 0.0

SAS222 0 101o.
Totals 3552 7(0.2%) 160 6 (3.80/) j _0.9

Table IV. Speaker Verification Results: Rate-3 Single Section Codebooks,
Majority Rule, And 5 Digits.

Digit Number Of False Number Of False V'-FAR
Subset Imooster Utterances Acceptances Admissible Utterances R ecion
01247 3552 19 (0.5%) 160 6 (3.8%7) 1.4
35689 3552 27 (0.8%) 160 4 (2.5%) 1.

*.25878 3552 25 (0.7%) 160 8 (5.0%?7) 1.

Table V. Speaker Verification Study: Multisection Codebooks, Majority Rule,
All 10 Digits, 800 Imposter Utterances, and 112 Admissible Utterances.

Codebaook n =12 n =8 n =4 n =2 n-1
Rate (RS) #FA #FR #FA #FR #FA #FR #FA #FR #FA #FR

0 18 19 6 9 0 10 0 10 0 10
1 1 6 1 6 0 8 0 5 0
2 0 7 0 6 0 5 - - -

13
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Table VI. Speaker Verification Study: A Multisection Digit
Codebook Per Speaker, RS = 2, and n 4.

Digit Number Of False Number Of iFaIse v7 7
Spke Imposter Utterances Acetne Admissible Utterances je ctionsj
ZERO S00 19 (2.4%) 112 12 (10.7%) 5.1
ONE 800 11 (1.4%) 112 13 (11.675) 4.0
TWO 800 8 (1.0%) 112 16 (14.3%) 3.8
THREE S00 21 (2.6%) 112 18 (16.1%) 6.5
FOUR 800 13 (1.6%) 112 13 (11.6%) 4.3
FIVE 800 16 (2.0%) 112 31 (27.7%) 7.4
SIX 800 9 (1.1%") 112 15 (13.4%7) 3.8
SEVEN 800 6 (0.8%) 112 24 (21.4%) 4.1
EIGHT 8oo 33 (4.1%) 112 9 (8.0%) 5.7
NINE 800o 16 (2.0%7) 112 19 (17.0%) 5.8

Table VII. Speaker Verification Results: RS 2, nx 4,
Majority Rule, and All 10 Digits.

Speaker Number Of False Number Of False I .FA -FR
ID Imiposter Utterances Acceptances Admissible Utterances IRc jections______________

TBS 222 1 10 T 0 0.0
W\ 1F 0 10 0 0.0

*RLD 222 0 10 0 0.0
CGRD 222 t t0 0 0.0
KAB 2221000.

RSW 222 0 10 0 0.0
REH 222 0 10 0 0.0
RGLP 222 to 1 0 0.0
DFG 222 . ~10 0 0.0
IDFG 222 3 10 0 0.0

HJ222 3 10 0 0.0
222-- 0 10 2 0.0

GNLW2 0 10 2 0.0
SJW 222 0 10 0 0.0
SAN 222 0 10 0 0.0

Totals 3552 9(0.3%) 160 2 2(1.3%?') 0.6

14



Table VIII. Speaker Verification Results: Rate-2 Multisection Codebooks,
Majority Rule, And 5 Digits.

Digit [I Number Of False Number Of False VA-F
Subset I myposter Utterances Acceptances. "Admissible Utterances Rejections _____

12467 = 3552 26 (0.7%) 160 1(0.6%) 0.7
03589 3552 34 (1.0%) 160 5 (3.1%) 1.7

101234 3552 117 (0.5%) 1160 13 (1.9%) 0.9

Table DC. Speaker Verification Study: Matrix Quantization Codebooks, Majority
Rule, All 10 Digits, 800 Imposter Utterances, and 112 Admissible Utterances

Codebook K=4 K -8 K =12 K =24
Rate (Rw) #FA #FR #FA #FR # #FA # FR # FA # FR

2 6 11 5 16 4 14 2 8
3 0 10 0"' 8 0 9 - -

4_ _ _ 0 8-----

Table X. Speaker Verification Study: A Matrix Quantization
Digit Codebook Per Speaker And RM =3.

SDigit Number Of False Number Of T False vF R
Spoken Imposter Utterances Acceptances Admissible Utterances jRejections_______
ZERO Sao 24&(3.0%) 112 12 110.,% -, -

O0 800go 6 (0.8?%) 112 14 (12.5-o) 3.2
r4TWO 800 12 (1.5%) 112 16 (14.3%) 4.6

THRfEE 800 29 (3.6-7) 112 21 (18.8%) 8.2
FOUR Soo 12(1.5%) 112 13 (11.6%) 4.2

FIVE 800 45 (5.6%) 112 33 (29.5%) 12.9
SLC 800 11 (l.4%) 112 16 (14.3%) 4.5
SEVEN 800 11 (1.4%) 112 22 (19.6%) .5.2
EIGHT 800 36 (4.5%) 112 14 (12.5%) 7.
NMhI 800 17 (2.1%") 112 22 (19.601'r 6.4
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Table XI. Speaker Verification Results: RM - 3,
K = 8, Majority Rule, and All 10 Digits.

Speaker 1 Number Of False Number Of False V/A.*R
D Imposter Utterances Acceptances Admissible Utterances Rejections FA

TBS 222 1 10 0 0.0
VNIF 222 0 10 0 0.0
RLD 222 0 10 1 0.0.
GRD 222 1 10 1 2.1
KAB 222 3 10 3 6.4
MSW 2220 10 0 0.0
REH 222 0 10 0 0.0
RGL 222 2 10 0 0.0
CJP 222 0 10 0 0.0
DFG 222 0 10 0 0.0
.ALK 222 0 10 0 0.0
HTNJ 222 0 10 0 0.0
GNL 222 0 10 2 0.0
JVS 222 0 to 0 0.0
SJN 222 0 10 1 0.0
5. S 222 0 10 t 0.0

1 Totals 3552 70.2%) 160 1.1

Table XI. Speaker Verification Results:
RM - 3, Majority Rule, 5 Digits.

Digit ] Number Of False Number Of False
Subset I[mioster Utterances Acceptances Admissible Utterances Reiections

12467 3552 17 (0.5%) 160 8 (5.0%) 1.5
03589 3552 44 (1.2%) 160 9 (5.6%) 2.6
01234 3552 115 (0.4%) 160 6 (3.8%) 1.3
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